Using gene genealogies to detect rare variants associated with complex traits.

نویسندگان

  • Kelly M Burkett
  • Brad McNeney
  • Jinko Graham
  • Celia M T Greenwood
چکیده

BACKGROUND AND OBJECTIVE Standard population genetic theory says that deleterious genetic variants are likely rare and fairly recently introduced. However, can this expectation lead to more powerful tests of association between diseases and rare genetic variation? The gene genealogy describes the relationships between haplotypes sampled from the general population. Although ancestral tree-based methods, inspired by the gene genealogy concept, have been developed for finding associations with common genetic variants, here we ask whether gene genealogies can help in identifying genomic regions containing multiple rare causal variants. METHODS With data simulated under several demographic models and using known gene genealogies, we developed and compared several tree-based statistics to determine which, if any, could detect the type of clustering expected with rare causal variants and whether the genealogic tree provides additional information about disease associations. RESULTS AND CONCLUSIONS We found that a novel statistic based on the scaled distance between the tips of a tree performed better than other tree-based statistics. When data were simulated with mild population growth, this statistic outperformed two standard non-tree-based methods, showing that an ancestral tree-based approach has potential for rare variant discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evaluation of Power to Detect Low-Frequency Variant Associations Using Allele-Matching Tests that Account for Uncertainty

There is growing interest in the role of rare variants in multifactorial disease etiology, and increasing evidence that rare variants are associated with complex traits. Single SNP tests are underpowered in rare variant association analyses, so locus-based tests must be used. Quality scores at both the SNP and genotype level are available for sequencing data and they are rarely accounted for. A...

متن کامل

Regression and data mining methods for analyses of multiple rare variants in the Genetic Analysis Workshop 17 mini-exome data.

Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches...

متن کامل

Digging into the extremes: a useful approach for the analysis of rare variants with continuous traits?

The common disease/rare variant hypothesis predicts that rare variants with large effects will have a strong impact on corresponding phenotypes. Therefore it is assumed that rare functional variants are enriched in the extremes of the phenotype distribution. In this analysis of the Genetic Analysis Workshop 17 data set, my aim is to detect genes with rare variants that are associated with quant...

متن کامل

Genome-Wide Association Analysis of Imputed Rare Variants: Application to Seven Common Complex Diseases

Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thu...

متن کامل

Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.

Accounting for gene-environment (G×E) interactions in complex trait association studies can facilitate our understanding of genetic heterogeneity under different environmental exposures, improve the ability to discover susceptible genes that exhibit little marginal effect, provide insight into the biological mechanisms of complex diseases, help to identify high-risk subgroups in the population,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human heredity

دوره 78 3-4  شماره 

صفحات  -

تاریخ انتشار 2014